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Abstract 

Background: Many studies have reported the associations between long-term exposure to PM2.5 

and increased risk of death. But, to our knowledge, none of them have used causal modeling 

approach or controlled for long-term temperature exposure. Few have used a general population 

sample. 

Objective: We estimated the causal effects of long-term PM2.5 effect on mortality and tested the 

effect modifications by seasonal temperatures, census-tract-level socio-economic variables, and 

county-level health conditions. 

Methods: We applied a variant of the difference-in-differences approach, which serves to 

approximate random assignment of exposure across the population and hence estimate a causal 

effect. Specifically, we estimated the association between long-term exposure to PM2.5 and 

mortality controlling for geographical differences using dummy variables for each census tract in 

New Jersey, a state-wide time trend using dummy variables for each year from 2004 to 2009, and 

mean summer and winter temperatures for each tract in each year. This approach assumed that 

no variable changing differentially over time across space other than seasonal temperatures 

confounded the association. 

Results: For each interquartile range (2 µg/m3) increase in annual PM2.5, there was a 3.0% (95% 

confidence interval: 0.2, 5.9%) increase in all natural cause mortality for the whole population, 

with similar results for people older than 65 [3.5% (0.1, 6.9%)] and people 65 or younger [3.1% 

(-1.8, 8.2%)]. Mean summer temperature and mean winter temperature in a census tract 

significantly modified the effect of long-term exposure to PM2.5 on mortality. We observed a 

higher percentage increase in mortality associated with PM2.5 in census tracts with more blacks, 

lower home value, or lower median income. 
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Conclusions: Under the assumption of the difference-in-differences approach, we identified a 

causal effect of long-term PM2.5 on mortality which is modified by seasonal temperatures and 

ecological socio-economic status.  
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Introduction 

Many studies have reported the association of long-term exposure to fine particulate matter 

(PM2.5) with mortality by following cohorts of subjects over time (Dockery et al. 1993; Beelen et 

al. 2008; Jerrett et al. 2013; Krewski et al. 2009; Lepeule et al. 2012; Pope et al. 1995; Puett et al. 

2009). Initial studies, the Harvard Six Cities (HSC) and American Cancer Society (ACS) study, 

contrasted exposure across cities of residence (Dockery et al. 1993; Pope et al. 1995), and, more 

recently, land use regression has been used to assign exposure, such as in the ACS Cancer 

Prevention II study (CPS-II) and the Nurses’ Health Study (NHS) (Jerrett et al. 2013; Puett et al. 

2009).  

However, a number of issues remain unresolved. First, the cohorts were convenience samples, 

which are not representative of the population as a whole, and often underrepresent minorities. 

For example, both the ACS cohort and the NHS cohort examine populations with considerably 

higher education than average (Pope et al. 1995; Puett et al. 2009). In addition, most cohorts 

(HSC, ACS, CPS-II, NHS) restricted the study population to city dwellers (Jerrett et al. 2013; 

Krewski et al. 2009; Lepeule et al. 2012; Puett et al. 2009), raising further issues about 

generalizability to the whole population. Secondly, temporal resolution of exposure has been 

limited. Since many land use regression models rely on extensive monitoring in a single year 

(Henderson et al. 2007; Hoek et al. 2008) to supplement routine monitoring, they are only 
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capable of estimating exposure for one year, which is taken as typical. Hence, only spatial 

variations in exposure can be used. In other studies, which used routine monitoring (Lepeule et 

al. 2012; Miller et al. 2007; Pope et al. 2009), lack of monitoring for PM2.5 likewise limits 

exposure contrasts to geographic ones because the PM2.5 level at the nearest monitoring site was 

assigned and often only a few monitoring sites were available for each city. This makes control 

for geographic confounders critical in all of these studies.  

Further, causal modeling approach has not been used to estimate the effect of long-term exposure 

to PM2.5 on mortality. To estimate causal effects, we need a counterfactual framework. Causal 

modeling seeks to estimate the difference in the expected value of mortality in the population 

under the exposure they received versus what it would have been had they received an 

alternative exposure. Since that counterfactual cannot be observed, various methods seek 

legitimate surrogates for the unobserved potential outcome. Randomized trials are one approach, 

but are not feasible for environmental exposures. Causal methods in observational epidemiology 

seek alternative ways to estimate a substitute for the counterfactual outcome (Baiocchi et al. 

2014; Hernan et al. 2008; Rubin 1997). One approach uses formal modeling, such as inverse 

probability weighting and propensity scores, to make the exposure independent of all measured 

predictors, and relies on the untestable assumption of no unmeasured confounding (Cole and 

Hernan 2008; Stampf et al. 2010). The other approach relies on natural experiments or “random 
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shocks” which are used as instrumental variables. The variation in such an instrumental variable 

is a subset of the variation in exposure which is believed to be independent of measured and 

unmeasured confounders. However, the assumption that the exposure variation due to the 

instrumental variable are randomly assigned with respect to all measured or unmeasured 

confounders is untestable and often relies on external information to justify. When using natural 

experiments or “random shocks”, some studies made use of the temporal variation in exposure 

caused by the “random shock”. For example, Clancy et al. (2002) compared the mortality rate 

before (1984-1990) and after (1990-1996) the ban on coal sales in Dublin (Clancy et al. 2002). 

The ban is an instrumental variable that is related to a substantial reduction in air pollution after 

the implementation. It is likely that the ban or a change in policy is independent of measured or 

unmeasured variables that confound the association between air pollution and mortality. Some 

other studies relied on the spatiotemporal variation in exposure caused by the instrumental 

variable. An example is the difference-in-differences approach. For example, Card and Krueger 

evaluated the difference in fast food employment in New Jersey between February 1992 (two 

months before an increase in the minimum wage) and November 1992 (five months after the 

increase), and compared it to the difference in fast food employment between February and 

November 1992 in Pennsylvania, a neighboring state that did not change its minimum wage 

(Card and Krueger 1994). The increase in the minimum wage was a random shock. In other 

words, they estimated the difference in the change (difference) in employment over time between 
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the two states. Measured or unmeasured factors that might confound the association between the 

minimum wage and fast food employment at each point in time (e.g., education) might vary 

between the two states, but as long as any temporal variation in such factors was comparable 

between the states, they would not confound the difference in the change in employment over 

time between the states. Therefore, if the untestable assumption that the change in the minimum 

wage was the only factor influencing the difference in the rate of change in fast food 

employment between New Jersey and Pennsylvania is true, the difference in differences is 

unconfounded.   

In this paper, we describe a variant of the differences-in-differences approach to estimate the 

causal relationship between annual average PM2.5 and mortality in over 1900 census tracts within 

New Jersey during 2004–2009.  

Methods 

Mortality data 

Death certificates in New Jersey from 2004 to 2009, including age, race, and the census tract of 

residence at the time of death for each individual, were obtained from the New Jersey 

Department of Health (NJDOH 2013). We only considered all natural cause deaths. People who 

died of external causes including injuries and poisoning were excluded [i.e. International 

Statistical Classification of Diseases, 10th Revision (ICD-10) codes S00 through U99]. We 
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regarded census tract as the unit of the analysis, aggregated annual natural cause death in each of 

the census tracts. 

Exposure assessment 

The exposure assessment was based on a previously published hybrid model incorporating daily 

satellite remote sensing data at 1 × 1 km spatial resolution (Kloog et al. 2014a). Briefly, we made 

use of a new algorithm developed by NASA - MAIAC (Multi-Angle Implementation to 

Atmospheric Correction). The MAIAC algorithm provides aerosol optical depth (AOD) data 

which allows us to use high resolution 1 × 1 km (versus currently available 10 km) AOD data. 

PM2.5 was predicted using a mixed model with AOD, spatial and temporal predictors including 

meteorology, land use, and point emission. For the whole prediction area, the northeastern US, 

the mean out-of-sample R2 from ten-fold cross-validation and slope of predictions were 0.88 and 

0.99, respectively, suggesting excellent prediction ability. Annual PM2.5 of a census tract in a 

given year was computed by averaging the predicted daily PM2.5 over all 1 × 1 km grids within 

that census tract in that year. 

Temperature 

Daily mean air temperature at each 1 × 1 km grid in New Jersey was estimated using a similar 

mixed, spatio-temporal-resolved, and satellite-based model with MODIS measured surface 

temperature in 1 × 1 km spatial resolution (Kloog et al. 2014b). For the whole prediction area, 
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the northeastern US, the mean out-of-sample R2 from ten-fold cross-validation was 0.95 when 

surface temperature was available and 0.94 when surface temperature was not, suggesting 

excellent prediction performance. More details have been published elsewhere (Kloog et al. 

2014b). The mean summer temperatures of a census tract in a given year was computed by 

averaging the daily predicted air temperature from June to August in that year over all 1 × 1 km 

grids within that census tract, and the mean winter temperatures were the averages in January, 

February, and December. We controlled for the mean summer and winter temperatures when 

estimating the association between PM2.5 and mortality. These two variables were also tested as 

potential effect modifiers. 

Socio-economic and behavioral data 

From the US Census for 2000, summary file 3, we obtained census-tract-level data on 

population, socio-economic status (SES) including percent of black residents, median household 

income, and median value of owner occupied homes (U.S. Census Bureau 2000). We also 

obtained age-adjusted yearly prevalence estimates of diabetes and smoking at county level from 

2004 to 2009 from the CDC Behavioral Risk Factor Surveillance System (BRFSS) (CDC 2013). 

Difference-in-differences approach 

We begin with the potential outcomes framework of the Rubin Causal Model (Rubin 1991). Let 

𝑌𝑌!,!!!!be the potential outcome (aggregated number of deaths) in the population of census tract c 
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if exposed to A=a in year t, and let 𝑌𝑌!,!!!!!be the potential outcome under the alternative exposure 

a´. We would like to estimate 𝐸𝐸 𝑌𝑌!,!!!! /𝐸𝐸 𝑌𝑌!,!!!!! . We assume that the potential outcome 

depends on predictors in the following manner: 

log(E(Ya
c,t)) = β0 + β1 a + β2 Zc + β3 Ut + β4 Wc,t + log(Pc) [1] 

where Zc are spatial confounders that vary among census tracts but not over the time period of 

the study (e.g., SES and diet), Ut are temporal confounders that vary over time but not among 

census tracts, Wc,t are confounders that vary over time and among census tracts, and log(Pc) is an 

offset term representing the natural log of the population in census tract c.   

Although equation 1 uses the aggregated number of deaths in a census tract in a year (in an 

ecological form), it closely relates to an individual-level model. Ecological bias is a potential 

concern when non-linear dose-response relationship and within-area variability exist, because an 

individual risk model may have a different form from the ecological model (Jackson et al. 2006). 

However, as shown by Lu and Zeger (2007), a model of aggregated event counts can be derived 

from an individual risk model when the exposure is common across individuals (Lu and Zeger 

2007), as was the case for the present study, where PM2.5 for each individual during each year 

was assigned as the average value over all 1 × 1 km geographic grids within their census tract in 

that year. Although such assignment introduces Berkson error in exposure assessment, it will not 

bias the effect estimates. 
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Specifically, for individual i in census tract c in year t, the risk of death (λ) could be modeled as, 

λci (t, PMcit) = λ0ci(t) exp(β1 PMcit) = λ0ci exp(β1 PMcit + γcit).   [2] 

where λ0 represents the baseline risk of mortality, and γ represents the individual-level 

confounders. Using the condition that PMcit = PMct, 

λci (t, PMcit) = λ0ci exp(β1 PMct + γcit).    [3] 

This step introduces Berkson error. Then we sum up both sides of equation [3] over all of the 

subjects in tract c and year t, 

µct = Σi λ0ci exp(β1 PMct + γcit) = exp(β1 PMct)×Σi λ0ci exp(γcit) = exp(β1 PMct + log(Σi λ0ci 

exp(γcit)))   [4] 

where µct is the expected mortality in tract c in year t. Since log(Σi λ0ci exp(γcit)) is a function of t 

in tract c, we have 

µct = exp(β1 PMct + fc(t)),  [5] 

where f c(t) is a function of time for each census tract that could be decomposed into a tract-

specific component that is constant over time (Zc), a time-varying component that is 

homogeneous over all tracts (Ut), and a component that varies over time and among census tracts 

(Wc,t), which is essentially the same as equation 1. 



Environ Health Perspect DOI: 10.1289/ehp.1409671 
Advance Publication: Not Copyedited 

 

13 

 

Then let us look at equation 1 again. If we look at differences between adjoining years, where the 

exposure in the other year is a´, we have: 

log 𝐸𝐸 𝑌𝑌!,!! − log 𝐸𝐸 𝑌𝑌!,!!!!! = 𝛽𝛽! 𝑎𝑎 − 𝑎𝑎! + 𝛽𝛽! 𝑈𝑈! − 𝑈𝑈!!! + 𝛽𝛽! 𝑊𝑊!,! −𝑊𝑊!.!!!     [6] 

and Zc and β0 have disappeared. If we then take the difference of these differences between 

census tracts c and c´, we have 

log 𝐸𝐸 𝑌𝑌!,!! − log 𝐸𝐸 𝑌𝑌!,!!!!! − log 𝐸𝐸 𝑌𝑌!!,!
! − log 𝐸𝐸 𝑌𝑌!!,!!!

!!

= 𝛽𝛽! 𝑎𝑎 − 𝑎𝑎! − 𝑏𝑏 − 𝑏𝑏! + 𝛽𝛽! 𝑊𝑊!,! −𝑊𝑊!.!!! − 𝑊𝑊!!,! −𝑊𝑊!!.!!!     [7] 

where b and b´ are the exposures in tract c´ at times t and t-1, respectively.  If the change in Wc,t 

over a year is the same in both locations, then 𝑊𝑊!,! −𝑊𝑊!.!!! − 𝑊𝑊!!,! −𝑊𝑊!!.!!!  is zero and 

the difference between locations in these within location differences will only depend on the 

difference in their exposure differences, and hence this estimate will be causal. It is also a 

marginal, not conditional, estimate since it is not conditioned on Zc, Ut, and Wc,t. Alternatively, if 

differences in the rate of change of the Wc,t are uncorrelated with differences in the rate of 

change of exposure in different locations, then the results are still causal. This is the key 

assumption of this approach. The advantage of this approach is, when this assumption holds, the 

ability to control for unmeasured confounders (Zc, Ut, and Wc,t need not be observed, since they 

cancel out).  
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We can generalize this to include many census tracts instead of two, and to include six years 

instead of two, and to deal with nonlinear changes over time. Estimating differences between 

years (equation [6]) removes confounding by variables that vary by census tract but not time 

(Zc). In the context of multiple tracts, we can accomplish this by controlling for indicator 

variables for each tract. Estimating differences between census tracts (equation [7]) removes 

confounding by covariates that vary over time, but are constant between census tracts (Ut). 

Again, using indicator variables for each of the six years accomplishes the same thing, even if 

the trend over time is not linear. More formally, from equation 1, we have 

log 𝐸𝐸 𝑌𝑌!,!! = β! + β!a+ β!𝑍𝑍! + β!U! + β!W!,! + log𝑃𝑃! 

= β! + β!a+ β!𝑍𝑍!I!
!!!!

+ β!𝑈𝑈!I!
!!!!

+ β!W!,! + log𝑃𝑃! 

= β! + β!a+ β!I!
!!!!

+ β!I!
!!!!

+ β!W!,! + log𝑃𝑃!           [8] 

where Ic and It (indicator variables for tract c and year t, respectively) effectively control for Zc 

and Ut under multi-tract and multi-year scenarios, in the same way that the differencing in 

equations 6 and 7 control for Zc and Ut when there are only two tracts and two years. βc is the 

time-invariant component for tract c and βt is time trend for year t. We used cR to denote the 

reference census tract and tR to denote the reference year. In summary, spatial and temporal 

confounders are controlled because differences among census tracts and time trends are 
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controlled by Ic and It, and there is no confounding by person-specific factors that vary within 

years and census tracts because all persons in a census tract during a given year have the same 

exposure. 

For the above to be a causal estimate, we must also assume that differences in the Wc,t from the 

tract level mean (captured by the dummy variable for tract) and state level trend are uncorrelated 

with the same differences in exposure. This is the untestable hypothesis, which must be judged 

on external information. How plausible is it? Factors such as SES and smoking rate vary across 

census tracts in New Jersey, and it is possible that these variations might be correlated with air 

pollution. But all differences between census tracts in any such variables are removed by using a 

dummy variable for each tract. What remains is variation in, for example, smoking rates that 

varied differentially among census tracts and over time. These would have to be correlated with 

variations in PM2.5 from its census tract average and mean yearly change in New Jersey for 

confounding to remain. This seems much less plausible. Indeed, these tract specific pollution 

changes mostly depend on EPA regulatory changes, and on year-to-year variations in back 

trajectories (more or less polluted areas upwind), mixing height, and other meteorological factors 

which are unlikely to be related to smoking or any other covariate over this six-year time period, 

except temperature. Therefore, to account for potential confounding by temperature, we adjust 
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for functions of temperatures, as shown in equation 9 where the difference-in-differences 

approach is modeled using Poisson regression with overdispersion (Donohue and Ho 2007): 

log 𝐸𝐸 𝑌𝑌!,! = β! + β!PM!,! + β!I!!!!! + β!I!!!!! + s 𝑇𝑇𝑇𝑇!,!;𝛃𝛃𝑻𝑻𝑻𝑻 + s 𝑇𝑇𝑇𝑇!,!;𝛃𝛃𝑻𝑻𝑻𝑻 +

log𝑃𝑃!   [9] 

where PMc,t is PM2.5 concentration in tract c at time t, Ic and It represent indicators for each 

census tract and year, and Tsc,t and Twc,t represent mean summer and winter temperatures for 

each tract and year, which are modeled as linear splines (function s) with a single knot at their 

means to account for possible nonlinear associations of temperature with mortality. Seasonal 

temperatures are linked to mortality (Shi et al. 2015) and could also be related to aerosol 

concentration (Rosenfeld et al. 2014). Since an increase in temperature in the winter may have a 

different effect (and sign) on mortality than an increase in the summer, we chose to use the mean 

summer and mean winter temperature as two weather-related variables (as opposed to annual 

mean temperature) that may influence annual mortality rates (Shi et al. 2015). To summarize, the 

difference-in-differences approach controlled for (1) geographical differences using dummy 

variables for each tract; (2) a state-wide time trend using dummy variables for each year; and (3) 

variables that vary differentially over time and across space that is correlated with PM2.5 which 

are seasonal temperatures. For the estimate to be causal, we assume that no variable that changes 
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differentially among space and over time other than temperature confounds the association 

between the exposure and the outcome. 

The difference-in-differences approach was applied to estimate the causal effect of long-term 

exposure to PM2.5 on mortality among people in New Jersey. We also estimated the association 

for people aged >65 years old and people aged 65 or younger by stratification. We tested if the 

association was modified by mean summer temperature and mean winter temperature. We 

achieved this by adding into the model two sets of product terms: one is the product terms 

between the spline of mean summer temperature and PM2.5 and the other is the product terms 

between the spline of mean winter temperature and PM2.5. We also tested if the association was 

modified by ecological SES variables at census tract level using Census 2000 data (the percent of 

black residents, median household income, and median home values), and ecological health 

condition at county level using BRFSS data during 2004-2009 (age-adjusted prevalence of 

diabetes and smoking). These effect modifications were tested by adding a product term between 

PM2.5 and the modifier into the model. Not only did we test these effect modifications among the 

whole population, we also tested them in a subgroup analysis by restricting the study population 

to the white residents (70% of the total population) to see if the results are consistent within a 

race group. The consistency could reflect if the association estimated using the whole population 

was confounded by individual-level race group. We did not repeat the analysis for other race 
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groups due to insufficient power to detect effect modifications. In addition, because these effect 

modifiers all reflected the SES of a census tract and are potentially related to each other, we 

fitted a model with simultaneous interactions of PM2.5 with percent of black residents, home 

value, household income, smoking rate, and diabetes rates to see which of them are the most 

robust modifiers. We used backward elimination to select the modifiers. Specifically, we started 

from a model with all five interaction terms. Then the interaction term with the largest p-value 

was dropped and a model without that interaction term was refitted. We repeated this procedure 

and stopped dropping variables until each of the remaining interaction terms has a p-value of 

<0.05. 

To compare the difference-in-differences approach with an estimate derived using only the 

within-tract variation of the exposure, we performed a sensitivity analysis fitting Poisson 

regression within each of the census tracts regressing total mortality against PM2.5, and pooled 

the effect estimates using random-effects meta-analysis.  

All statistical analyses were done using R 3.1.2. Statistical significance was defined as p-value < 

0.05. 

Results 

Using population counts from Census 2000 data, we studied 1,938 census tracts in New Jersey 

during 2004-2009. In total, there were 365,530 deaths from 2004 to 2009, among which 281,170 
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deaths were at age greater than 65, representing 77% of the total. Table 1 and table 2 summarize 

the spatial and temporal variation of mortality, PM2.5 and temperature. The spatial variation of 

mortality is calculated by first averaging the annual deaths from 2004 to 2009 in each of the 

census tracts and then summarizing the distribution using these death counts. The spatial 

distribution of mortality had a mean of 31.4 deaths per year per census tract. Much of the 

variation in deaths was due to variations in the age distribution and size of the population in each 

tract. For example, the 5th – 95th percentile range in the annual mortality rate of persons over 65 

across census tracts was from 22.1 to 62.8 per thousand. The 5th – 95th percentile range of 

averaged annual PM2.5 over six years ranged from 9.9 to 12.9 µg/m3 across census tracts with a 

mean of 11.3 µg/m3. The 5th – 95th percentile range of mean temperature varied from 17.2 to 

19.6 °C in summers, and from 4.6 to 7.0 °C in winters. The temporal trend is presented using the 

average of the variables over all of the census tracts in New Jersey in each year from 2004 to 

2009. Mortality counts went down in 2006 and 2007 compared to 2004 and 2005, and but went 

slightly back up in 2008 and 2009, indicative of nonlinear or random pattern in temporal 

variation. 

On the basis of the difference-in-differences approach (equation 9), we found a 3.0% [95% 

confidence interval 0.2, 5.9%] increase in all natural cause mortality for each interquartile range 

(IQR) increase in PM2.5 (2 µg/m3) among all residents in 1938 census tracts in New Jersey during 
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2004-2009. By comparison, the meta-analysis pooling all within-census-tract effects showed a 

similar increase of 3.7% (2.9, 4.5%) in mortality per IQR increase in PM2.5. Restricting the study 

population to age of death greater than 65 years, we obtained a similar effect estimate: 3.5% (0.1, 

6.9%) increase in mortality per IQR increase in PM2.5. For people at age less than or equal to 65, 

the percent change in mortality was similar, 3.1% (-1.8, 8.2%), albeit with wider confidence 

interval. 

The percent change in mortality with an IQR increase in PM2.5 was 1.8% (95% CI: -1.6, 5.2%) if 

mean summer and winter temperatures were at the average across all tracts and years (Table 3). 

By comparison, the percent change in mortality with an IQR increase in PM2.5 was -1.6% (-4.2, 

1.1%) if mean summer temperature was 1 ˚C below the average across tracts and years and mean 

winter temperatures was at the average (interaction p-value <0.01) and was 1.6% (-0.6, 3.8%) if 

mean summer temperature was 1 ˚C above the average across tracts and years and mean winter 

temperature was at the average (interaction p-value 0.73). The percent change in mortality was 

1.6% (-0.6, 3.9%) if mean winter temperature was 1 ˚C below the average across tracts and years 

and mean summer temperature was at the average (interaction p-value 0.82) and was 5.3% (2.9, 

7.8%) if mean winter temperature was 1 ˚C above the average across tracts and years and mean 

summer temperature was at the average (interaction p-value <0.01). 
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Figure 1 shows the estimated effects per interquartile range increase in PM2.5 on mortality rates 

in the upper and lower deciles of census-tract-level percent of black residents, median home 

value and median household income from Census 2000 data and age-adjusted diabetes and 

smoking rate from BRFSS data during 2004-2009. Among the whole population, the percent 

change in mortality associated with PM2.5 was modified by the percent of black residents 

(interaction p<0.01), median income (interaction p<0.01), and home values (interaction p = 

0.02). We did not find effect modifications by smoking rates (interaction p = 0.60) or percent of 

diabetics (interaction p = 0.06). Using backward elimination to select interaction terms from the 

simultaneous interaction model, we found that median household income was the only robust 

modifier that finally remained in the model. We also tested the consistency of these results 

among white residents (70% of the total population). We found that PM2.5 significantly 

interacted with percent of black residents (interaction p<0.01), age-adjusted diabetes (interaction 

p<0.01), and median income (interaction p<0.01), but not with smoking rate (interaction p = 

0.63), or median home value (interaction p = 0.13). 

Discussion 

The present study used a variant of difference-in-differences approach to estimate the causal 

effect of long-term exposure to PM2.5 on mortality in a large and general population. 
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First, we have estimated the association between PM2.5 and mortality using a counterfactual 

framework. We have accounted for SES, behavioral, and other risk factors that vary among 

census tracts by modeling dummy variables for each tract. We have limited potential changes 

over time in such risk factors by focusing on a short time period (six years), and by adjusting for 

average changes from year to year in New Jersey as a whole. If our assumption that yearly 

deviations from the state-wide yearly fluctuations in PM2.5 by tract (mostly due to regulatory and 

meteorological fluctuations) are unlikely to be associated with changes in other risk factors 

holds, we have identified a causal association. 

Second, the results add to the still relatively small literature that uses the general population 

which includes both high and low SES individuals, all occupations, and both rural and urban 

residents.  

The third is that we have identified interactions between PM2.5 and seasonal temperature. By far, 

very few studies have looked at the health effect of long-term temperature. An increase in mean 

summer temperature, a decrease in mean winter temperature, or an increase in the variability of 

summer or winter temperature were associated with a decrease in the hazard of death among 

Medicare beneficiaries in New England during 2000-2008 (Shi et al. 2015). There are also very 

few studies looking at the interaction between long-term temperature and long-term PM2.5. A 

survival analysis among >35 million Medicare beneficiaries residing in 207 US cities during 
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2000-2010 found that an increase in annual, summer, or winter temperature was associated with 

an increase in the hazard ratio of death associated with PM2.5 (Kioumourtzoglou et al. 2016). 

Consistently, we found that an increase in mean winter temperature was associated with an 

increase in the effect of PM2.5 on mortality. With regard to summers, the association between an 

IQR increase in PM2.5 and mortality in tracts with mean summer temperatures that are higher 

than the average are similar to the overall association. The interaction was driven more by a 

reduced risk of mortality in association with PM2.5 when mean summer temperatures are lower 

than the average. Under the changing climate, a rise in temperature not only would increase 

mortality through the direct effects of temperature, but also would increase the effect of long-

term PM2.5 exposure on mortality.  

The fourth is that by analyzing the population of an entire state we have had power to test 

interaction and found that the effect of PM2.5 was higher in census tracts with higher percentage 

of black residents, lower median home value, or lower median home income. Median household 

income was the most robust variable among these three SES variables. All these analyses 

consistently suggested that the effect of PM2.5 was higher in tracts with lower SES. Consistently, 

a recent study, Kioumourtzoglou et al. (2016), also found that a unit increase in PM2.5 in cities 

with higher percentage of black or lower household income was associated with higher percent 

increase in mortality among >35 million Medicare beneficiaries residing in 207 US cities during 
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2000-2010 (Kioumourtzoglou et al. 2016). When restricting the analysis to the white residents, 

we found that the interactions were basically consistent compared to the analyses for the whole 

population. This suggests that the estimates obtained using the whole population for PM2.5 were 

not confounded by individual-level race. The consistency between these two analyses also 

suggested that the SES of the neighborhood (or other people) would be associated with an 

individual’s susceptibility, which is a contextual effect.  

The fifth is that we identified this association in a location and time period with low 

concentrations of PM2.5. The average PM2.5 over the period of study was 11.3 µg/m3, and the 

range across the census tracts was from 8.2 µg/m3 to 13.7 µg/m3. Hence, this association was 

estimated completely below the old EPA annual standard of 15 µg/m3 (U.S. EPA, 1997), and 

predominantly below the current standard of 12 µg/m3 (U.S. EPA, 2013).  

To compare with previous studies, we converted the percent change in mortality from our study 

to reflect a 10 µg/m3 increase. We found a 15.5% (0.8, 32.3%) increase in all natural cause 

mortality for the entire population in New Jersey. By comparison, the HSC study reported an 

estimate of 13% (4, 23%) and its extended study reported a 14% (7, 22%) increase in mortality 

(Dockery et al. 1993; Lepeule et al. 2012). The ACS cohort which examined the association 

among 500,000 residents residing in 51 cities found a 6% (2, 10%) increase in mortality (Pope et 

al. 1995; Pope et al. 2002). The NHS cohort which examined the association with all cause 
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mortality among women reported an increase of 26% (2, 54%) (Puett et al. 2009). Our result lied 

on the higher end compared with these cohort studies, possibly due to the fact that we used a 

spatially resolved exposure model. The NHS study which used geographically resolved exposure 

assessment also tended to have a larger effect size (Puett et al. 2009). Further, our model has a 

higher cross-validation R2 than most land use regression models. Hoek et al. (2008) summarized 

a number of land use regressions. The highest R2 of the model (typically higher than the cross-

validation R2) was 0.82. It is typical to have a R2 of model below 0.7 (Hoek et al. 2008). The 

land use regression used in the NHS study had a cross validation R2 of 0.77 and 0.69 for post- 

and pre-1999 periods (Yanosky et al. 2009). By comparison, our model had a cross-validation R2 

of 0.88, which produced exposure predictions with less measurement error. We found that the 

percent change in mortality among people over 65 years in age in New Jersey was 18.1% (0.6, 

38.6%) for each 10 µg m-3 increase in long-term PM2.5. This estimate is larger than the estimate, 

4% (3, 6%) increase in all cause mortality, among Medicare beneficiaries residing in 4,568 zip 

codes (people aged 65 or above) during 2000-2005 (Zeger et al. 2008), which used average 

PM2.5 concentrations measured by monitors within six miles from a zip code to approximate 

exposure. A lower exposure measurement error may be one of the reasons why our study found a 

larger effect of PM2.5. The sensitivity analysis (meta-analysis pooling within-census-tract effects) 

found a 3.7% (2.9, 4.5%) increase in mortality per IQR increase in PM2.5, suggesting our result 

was close to the result using within-census-tract analysis. 
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We acknowledge that our study has limitations. First, we did not control for some of the 

differential changes over time across census tracts. Although temperature may be the strongest 

confounder between PM2.5 and mortality, the change over time in other variables such as the 

employment rates may also confound the relationship. Second, we did not measure individual-

level predictors of mortality. Variations in these predictors within a census tract, however, cannot 

confound PM2.5 since they are not correlated with exposure (everyone in the tract has the same 

exposure in the same year). They cannot confound associations between census tracts, because 

there is no exposure contrast between tracts (due to the dummy variables for each tract). And 

they cannot confound over time because dummy variables for each year remove that pattern from 

outcome and exposure. For them to confound, their difference from the general trend by tract 

would have to be correlated with the differences around the trend in PM2.5, and we can see no 

mechanism that would produce this correlation. Although variations in the individual-level 

predictors cannot confound the association, we acknowledge that the exposure misclassification 

occurs from assigning the same yearly averaged PM2.5 in census tracts for all residents. This 

variation in exposure for each individual around a small area should be Berksonian, which 

should not bias our estimates, but will increase the confidence intervals. By comparison, cohort 

studies assigning exposure for each of the subjects according to the date of death will not suffer 

from this problem if they have address-specific exposure. Moreover, our modeling does not fall 

into the typical ecological bias in which the exposed may not be the ones who developed the 
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outcome, since everyone within a census tract was assigned to the same geographically averaged 

exposure. Third, using PM2.5 at census tract level to assess the exposure is still not as accurate as 

using PM2.5 predictions at the address level. Fourth, in our analysis, the strong control for spatial 

confounding and temporal trend using dummy variables for each census tract and each year 

substantially lowered the exposure contrast across tracts and over time, which potentially 

increased the standard error of effect of PM2.5. Fifth, the population in each census tract was 

likely to change from 2004 to 2009. Our analyses used population data from Census 2000 to 

approximate the population in 2004-2009 which possibly added inaccuracy to the estimates. 

Conclusions 

Under the assumption that no variable changing differentially over time across census tracts 

other than seasonal temperatures could confound the association, we found causal associations 

between PM2.5 and all natural cause mortality. The effect estimates of PM2.5 from our analyses 

were comparable to previous cohort studies, but on the higher end. The association was modified 

by seasonal temperatures and ecological SES variables. 
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Table 1. Distribution of census-tract-specific mean values for 2004 through 2009 for annual all 
natural cause mortality, annual mean PM2.5, mean summer temperature, and mean winter 
temperature among 1,938 census tracts in New Jersey. 

Variable Mean	 5th	 25th	 Median	 75th	 95th	
Death counts per census tract per year (All 
age groups) 

31.4	 7.7 17.8 27.0 39.8	 70.0 

Mortality rate (All age groups, per 1,000) 7.3 3.0 4.9 6.6 8.5 13.6 
Population (All age groups, based on 
Census 2000 data) 

4,412 1,853 3,152 4,181 5,562 7,527 

Death counts per census tract per year 
(Age > 65) 

24.2	 4.3 12.5	 19.5	 30.3 58.7 

Mortality rate (Age > 65, per 1,000) 40.1 22.1 31.2 38.5 47.2 62.8 
Population (Age > 65, based on Census 
2000 data) 

598 175 350 525 756 1,207 

Death counts per census tract per year (Age 
≤ 65) 

7.2	 2.0 4.5	 6.7	 9.3	 14.8	

Mortality rate (Age ≤ 65, per 1,000) 2.1 0.8 1.3 1.8 2.4 4.2 
Population (Age ≤ 65, based on Census 
2000 data) 

3,814 1,535 2,712 3,639 4,868 6,555 

Annual PM2.5 (µg m-3) 11.3	 9.9	 10.8	 11.2	 11.9	 12.9	
Summer temperaturea (°C) 18.6	 17.2	 18.2	 18.7	 19.1	 19.6	
Winter Temperaturea (°C) 5.9	 4.6	 5.6	 5.9	 6.2	 7.0 
aSummer (winter) temperature is an average of the predicted daily temperatures across all 1 km 
× 1 km grids in a given census tract during June, July, and August (January, February, and 
December) in a given year.
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Table 2. Annual mean values (± SD) across 1,938 New Jersey census tracts for all natural cause mortality, annual mean PM2.5, mean 
summer temperature, and mean winter temperature. 

Variable 2004	 2005	 2006	 2007	 2008	 2009	
Death counts per census tract per year (All 
age groups) 

34.3 ± 23.9 34.2 ± 23.7 29.2 ± 22.5 28.7 ± 21.6	 30.2 ± 21.3	 32.0 ± 22.6	

Death counts per census tract per year 
(Age > 65) 

26.4 ± 21.2	 26.5 ± 21.0	 22.2 ± 19.8 22.2 ± 19.1	 23.2 ± 19.1 24.6 ± 20.2	

Death counts per census tract per year (Age 
≤ 65) 

7.9 ± 5.4	 7.7 ± 5.2	 7.0 ± 5.1	 6.6 ± 4.7	 7.0 ± 4.6	 7.4 ± 4.7	

Annual PM2.5 (µg/m-3) 12.3 ± 1.0 12.8 ± 1.2 11.7 ± 0.9 11.6 ± 1.0 10.6 ± 0.8 9.1 ± 0.7 
Summer temperaturea (°C) 18.1 ± 0.6 20.3 ± 0.8 19.1 ± 0.7 18.4 ± 0.7 18.6 ± 0.8 17.3 ± 0.7 
Winter temperaturea (°C) 4.3 ± 0.7 5.0 ± 0.7 7.8 ± 0.6 5.9 ± 0.7 6.7 ± 0.7 5.7 ± 0.8 
aSummer (winter) temperature is an average of the predicted daily temperatures across all 1 km × 1 km grids in a given census tract 
during June, July, and August (January, February, and December) in a given year.



Environ Health Perspect DOI: 10.1289/ehp.1409671 
Advance Publication: Not Copyedited 

 

36 

 

Table 3. Percent change (95% CI) in mortality per IQR increase (2 µg m-3) increase in PM2.5 at 
given summer and winter temperature. 

Mean Summer 
Temperature (˚C) 

Mean Winter 
Temperature (˚C) 

Percent Change (95% CI) in Mortality 
Per IQR Increase in PM2.5 

18.6a (Average) 5.9b (Average) 1.8% (-1.6, 5.2%) 
17.6 (Average - 1) 5.9 (Average) -1.6% (-4.2, 1.1%) 
19.6 (Average + 1) 5.9 (Average) 1.6% (-0.6, 3.8%) 

18.6 (Average) 4.9 (Average - 1) 1.6% (-0.6, 3.9%) 
18.6 (Average) 6.9 (Average + 1) 5.3% (2.9, 7.8%) 

athe average of the census-tract-specific mean summer temperature across 1,938 census tracts 
during 2004-2009. 
bthe average of the census-tract-specific mean winter temperature across 1,938 census tracts 
during 2004-2009. 
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Figure Legend 

Figure 1. Percent change in mortality with 95% confidence intervals for each interquartile range 

(2.0 µg/m3) increase in PM2.5 at the upper and lower decile of each modifier: percent of black 

residents (10th percentile = 0.2%, 90th percentile = 52.0%) , percent of diabetics (10th percentile = 

6.1%, 90th percentile = 9.2%), smoking rate (10th percentile = 7.8%, 90th percentile = 15.9%), 

median home value (10th percentile = 189,300, 90th percentile = 578,600), and median household 

income (10th percentile = 35,625, 90th percentile = 115,049) among (A) the whole population and 

(B) the white residents in New Jersey. Census-tract-specific percent of black residents, median 

home value, and median household income came from Census 2000 data. County-level percent 

diabetics and smoking rate came from BRFSS data from 2004 to 2009. 

* indicates interaction p < 0.05. 

  



Environ Health Perspect DOI: 10.1289/ehp.1409671 
Advance Publication: Not Copyedited 

 

38 

 

 

●●
●●

●● ●● ●●

* * *

●●

●●
●● ●●

●●

*

* *

−5

0

5

10

15

−5

0

5

10

15

Black Diabetes Smokers Home Value Income

Pe
rc

en
t C

ha
ng

e 
in

 M
or

ta
lit

y

●● 10th
90th

Figure 1


